(Note: in this post, like many others, I unfortunately don't give too much background info. If you would like to learn more about Larrabee the Intel MIC, you are welcome to check out the slides and video lecture I gave on the subject here. Larrabee architect Tom Forsyth also links to a wealth of sources on Larrabee at his home page).
The presentation at ISC 2011 also showed a variety of benchmarks from different research centers using the Knights Ferry development board. The GFLOPS numbers for the year-old Knights Ferry don't look too impressive to me; you can get 2 TFLOP SGEMM performance out of an AMD Radeon HD 5870 (released in 2009), for instance. However, we must keep in mind that those 2 TFLOPs came out of writing the routine entirely in AMD intermediate language (IL), which is 5-wide VLIW assembly. Larrabee's true importance is in its ease of use. Take a look at the second page of this PDF to see how simple it can be to write parallel code for Larrabee. One could even argue that it's nicer than Microsoft's unreleased C++ AMP.
2012 is not yet here though, and time is of the essence in the extremely fast-moving GPU world. NVIDIA is preparing Fermi's successor, and AMD's Graphics Core Next is also around the corner (I hope to write a post on that soon). The semiconductor industry knows to never underestimate Intel, though, and with 50 Larrabee cores, the advantages of the tri-gate process, and the might of Intel's software development tools, Knights Corner has the potential to shake up the GPU compute industry.
No comments:
Post a Comment